
Web Application Security

Logical Flaws

Password Change/Forgotten Functions

Brute Forcible Login

Verbose Failure Messages

Insecure Credential Distribution

Predictable Usernames/Initial Passwords

Predictable Account Activation
Link/ID

Bad Passwords

Fail-Open Login

defective multi-stage login

Same Origin Policy
only allow to read data
originating from the same
source

enforced by utilizing domain names
only the exact same domain
can be accessedexplicit exceptions can be made

if want access to a subdomain both pages
must explicitly set the document.domain to
the same value

problem

flash has xml policy files that
define exceptions called
/crossdomain.xml

XMLHttpRequest

new Header called Access-Control

in xml
<?access-control processing
instruction

sources are the same if the
following matches

protocol

hostname

port (not for IE?)

Sessions

session management needed to
identify different users across
requests

session management
closely related to
authentication mechanism

http is stateless
webapplications becoming like
desktop applications -> need
state

technologies

main technology Cookies

http authentication

basic

digest

NTLM

(Kerberos)

client certificates

encoded session state
being pushed to client

in cookie

in hidden form fields

attacks

Session Hijacking

CSRF

simple attack huge impact on
web app security

perform actions in users
behalf via users browser

possible because browser implicitly appends
Cookies to every request for the allowed
domain(s)

doesn't obey to same-origin policy
cannot read from other
domain, but influence it

XSS and CSRF can let unsuspecting
user attack a webserver on attackers
behalf

counter measures
incorporate nonces into state-changing
requestsXSS vulnerability would bypasses this

nonce could be read by JS

JS enables to act with web
site like the user

Session Fixation

webapp accepts provided
tokens as new sessions

webapp doesn't create new
token on login

attacker can smuggle new session token into
users browser and continue his session after
login

weak Session IDs

guessable meaningful tokens

predictable tokens

concealed sequences
reproducible algorithm
enabling brute-forcing

time dependency
token-generation process
depends only/mostly on time

the keyspace can be minimized the
better the timeframe of generation is
known

weak (P)RNG

static tokensuser doesn't need to log intokens holds authorization data

disclosure of tokens on network

fallback to http after login

http for all static contentusage of https only cookies

tricked by attacker to make http request to
server, not matter if successful, token will
be disclosed

vulnerable session termination

logout doesn't invalidate session

no session expiration

user didn't log out

possibly user got force quit

liberal cookie scope

domain

cookies are default sent in every request
web-servers sharing the same right-hand-side
of the domain

so in default the cookie is sent in all
requests to subdomains and the domain
itself

domain value can be changed
upto one below the tld

enabling also other webservers on a
subdomain to read the cookie from
users

path
similar to domain path defines to which
subdirectories on the server cookies will be
passed

too liberal path value again might enable
other users on the system to obtain cookies
from users of that application

counter measures

creating additional page tokens

pro

if an attacker uses the session of a user it will be
detected because the page token replied will not be
the last provided, because there are two open
instances

can be leveraged to track user
movement on page

con
opening several tabs at the same
time will be interpreted as an
attack

reactive session termination
deauthenticating user when suspicious
activity is noticed like modified hidden form
fields or strings associated with SQLi or XSS

Client Side

XSS

3 types

reflected XSS problem

client-supplied data gets
echoed back to the screen

most common via search box

DOM based XSS

unique form of XSS
JS payload doesn't need to be
sent or echoed by web server

similar to reflected XSS
can be persistent if
incorporates cookies

DOM (Document Object Model)
object structure to access &
manipulate nodes, values and
attributes

input validation vulnerability
on the client side JS

completely relies on JS and insecure use of
dynamically obtained data from DOM
structure

stored XSS

resulting from missing/bad
input/input handling

user is able to define
content which gets
evaluated as javascript or
create own javascript
blocks

developer doesn't apply needed
sanitzation for given context of user
supplied input

technique to force web sites to display
malicious code which gets executed in users
web browser

browser doesn't have to be
susceptible to any
vulnerability

user supplied data doesn't only
reach the server via GET and
POST

all headers may be spoofed by
user including cookie, referer and
host

logging infrastructure must
implement proper escaping for
everything logged

the target is usually the admin,
which will gain the attacker admin
rights

encoding can pose a problem

variable width encoding can
make escaping invalid

server can't correctly check and filter the
encoding the browser uses to interpret the
page is a different

possible attack methods

history stealing getComputedStyle API visited style

intranet hacking

defacement

JS can completely alter look of
web site

can be leveraged for phishers
to occur on the real website

abuse users browser to run
applications without user
approval

as filesharing node

as part of anonymity network

Flash Security

compiled bytecode
unaware developer might
include secrets into code

those can be revealed by
decompilers and reversing

cross domain requests
each exact domain gets an
own sandbox

crossdomain.xml for cross
sandbox communication

sandboxing

Java Security

DNS Pinning Vulnerabilites

attack without dns pinning

browser connects to malicious
server with dns timeout of 1
second

JS tells browser to connect
back in 2 seconds

browser resolves name again
since no longer valid

dns server replies with arbitrary ip
address it wants to get the contents
from

this ip may be in the intranet
providing attacker access to the
inner network

the browser pins once received IPs
to domains to prevent the attack
above

browser protection to prevent attackers from
breaking the same-origin policy through DNS
tricks

anti-dns pinning

the browser is re-requesting dns if
the web server isn't reachable
anymore

attack

same as above, but this time the base
attacker system firewalls itself to be
unreachable for the browser in the second
request

it needs to firewall the port in question not the
whole server, so the whole process can be
carried out for different IPs on a single server

anti-anti-dns pinning

checking the host header if the
targeted system by the browser is
really ours

this would already happen if virtual
hosting is used, but there usually is a
default

anti-anti-anti-dns pinning
exploits in client side request building
mechanisms to spoof the host header defeats
this kind of protection

it is not possible to hijack session via
automated sending of cookies with this,
because cookie sending is determined by
domain not IP

intranet scanning can be combined with an
automated search for vulnerabilities in the
intranet

possibility to take over
systems in the intranet

use XSS or CSRF exploit to attack users
browser to steal information or authentication
tokens

JavaScript Hijacking

request json from other side
via
<script> include

redefine Array object to have
the results accessible

XMLHttpRequest wouldn't
work because of same origin
policy

user is authenticated on other
web service via cookie

if web service discloses
privacy relevant information
over json

Server Side
Attacks

SQL Injection

SQL databases are usually called indirected by a web
application, which passes a complete query containing
parts of user supplied content to the database
subsystem

attacks

SELECT

requests to retrieve
information

injection point usually the
WHERE clause

INSERT

creates new row

attackers usually have to guess database
schema and therefore doesn't know the
order and number of columns

brute-forcing the number with
1s (or 2000s for possible
dates) or NULLs

UPDATE

change one or more data rows

usual entry point the WHERE
clause and or the SET clause

DELETE

removes one or more rows

usual entry point is WHERE clause

UNION operator

combine two or more
SELECTs

can be leveraged to gain information
from different tables than original
query

selected fields must be same
number and type (structure)

names of tables and fields
must be known

names can be queried from
database specific metadata
tables

usual steps
inject ORDER BY $colnum until
error to check for number of
columns

search for columns of string type by
inserting NULL in all but one field, which
holds a string until string is displayed

Blind SQL injection

timing attacks

Second Order SQL Injection

correctly escaped user
content is written to the
database

user content is fetched from database
and used again without further
sanitization

foo' gets correctly escaped to
foo'' as username

foo' is fetched from database and used
to create update statement for
password without futher sanitization

Remote File Inclusion

Remote Code Execution

usually interpreted languages

executed code is built at
runtime containing user
supplied content

utilizing special characters to break out of
data context therefore being able to
execute arbitrary commands

in compiled languages attack not leverages
syntactic features of programming
language

payload contains machine code

Path Traversal

Web Application Firewall ModSecurity (Apache)

