Thursday, April 25, 2024

Exploit Bypasses Existing Spectre-V2 Mitigations in Intel, AMD, Arm CPUs

Researchers have disclosed a new technique that could be used to circumvent existing hardware mitigations in modern processors from Intel, AMD, and Arm, and stage speculative execution attacks such as Spectre to leak sensitive information from host memory.

Attacks like Spectre are designed to break the isolation between different applications by taking advantage of an optimization technique called speculative execution in CPU hardware implementations to trick programs into accessing arbitrary locations in memory and thus leak their secrets.

While chipmakers have incorporated both software and hardware defenses, including Retpoline as well as safeguards like Enhanced Indirect Branch Restricted Speculation (eIBRS) and Arm CSV2, the latest method demonstrated by VUSec researchers aims to get around all these protections.

Called Branch History Injection (BHI or Spectre-BHB), it’s a new variant of Spectre-V2 attacks (tracked as CVE-2017-5715) that bypasses both eIBRS and CSV2, with the researchers describing it as a “neat end-to-end exploit” leaking arbitrary kernel memory on modern Intel CPUs.

“The hardware mitigations do prevent the unprivileged attacker from injecting predictor entries for the kernel,” the researchers explained.

“However, the predictor relies on a global history to select the target entries to speculatively execute. And the attacker can poison this history from userland to force the kernel to mispredict to more ‘interesting’ kernel targets (i.e., gadgets) that leak data,” the Systems and Network Security Group at Vrije Universiteit Amsterdam added.

Put differently, a piece of malicious code can use the shared branch history, which is stored in the CPU Branch History Buffer (BHB), to influence mispredicted branches within the victim’s hardware context, resulting in speculative execution that can then be used to infer information that should be inaccessible otherwise.

Recommended:  Linux full-disk encryption bug fixed – patch now!

Spectre-BHB renders vulnerable all Intel and Arm processors that were previously affected by Spectre-V2 along with a number of chipsets from AMD, prompting the three companies to release software updates to remediate the issue.

Intel is also recommending customers to disable Linux’s unprivileged extended Berkeley Packet Filters (eBPF), enable both eIBRS and Supervisor-Mode Execution Prevention (SMEP), and add “LFENCE to specific identified gadgets that are found to be exploitable.”

“The [Intel eIBRS and Arm CSV2] mitigations work as intended, but the residual attack surface is much more significant than vendors originally assumed,” the researchers said.

“Nevertheless, finding exploitable gadgets is harder than before since the attacker can’t directly inject predictor targets across privilege boundaries. That is, the kernel won’t speculatively jump to arbitrary attacker-provided targets, but will only speculatively execute valid code snippets it already executed in the past.”

Go to Cybersecurity Knowledge Base

Got to Cybersecurity News

Go to Homepage

Go to Cybersecurity Academy

Stay informed of the latest Cybersecurity trends, threats and developments. Sign up for RiSec Weekly Cybersecurity Newsletter Today

Remember, CyberSecurity Starts With You!

  • Globally, 30,000 websites are hacked daily.
  • 64% of companies worldwide have experienced at least one form of a cyber attack.
  • There were 20M breached records in March 2021.
  • In 2020, ransomware cases grew by 150%.
  • Email is responsible for around 94% of all malware.
  • Every 39 seconds, there is a new attack somewhere on the web.
  • An average of around 24,000 malicious mobile apps are blocked daily on the internet.
Bookmark
ClosePlease login
Share the word, let's increase Cybersecurity Awareness as we know it
- Sponsored -

Sponsored Offer

Unleash the Power of the Cloud: Grab $200 Credit for 60 Days on DigitalOcean!

Digital ocean free 200

Discover more infosec

User Avatar
Steven Black (n0tst3)
Hello! I'm Steve, an independent security researcher, and analyst from Scotland, UK. I've had an avid interest in Computers, Technology and Security since my early teens. 20 years on, and, it's a whole lot more complicated... I've assisted Governments, Individuals and Organizations throughout the world. Including; US DOJ, NHS UK, GOV UK. I'll often reblog infosec-related articles that I find interesting. On the RiSec website, You'll also find a variety of write-ups, tutorials and much more!

more infosec reads

Subscribe for weekly updates

explore

more

security